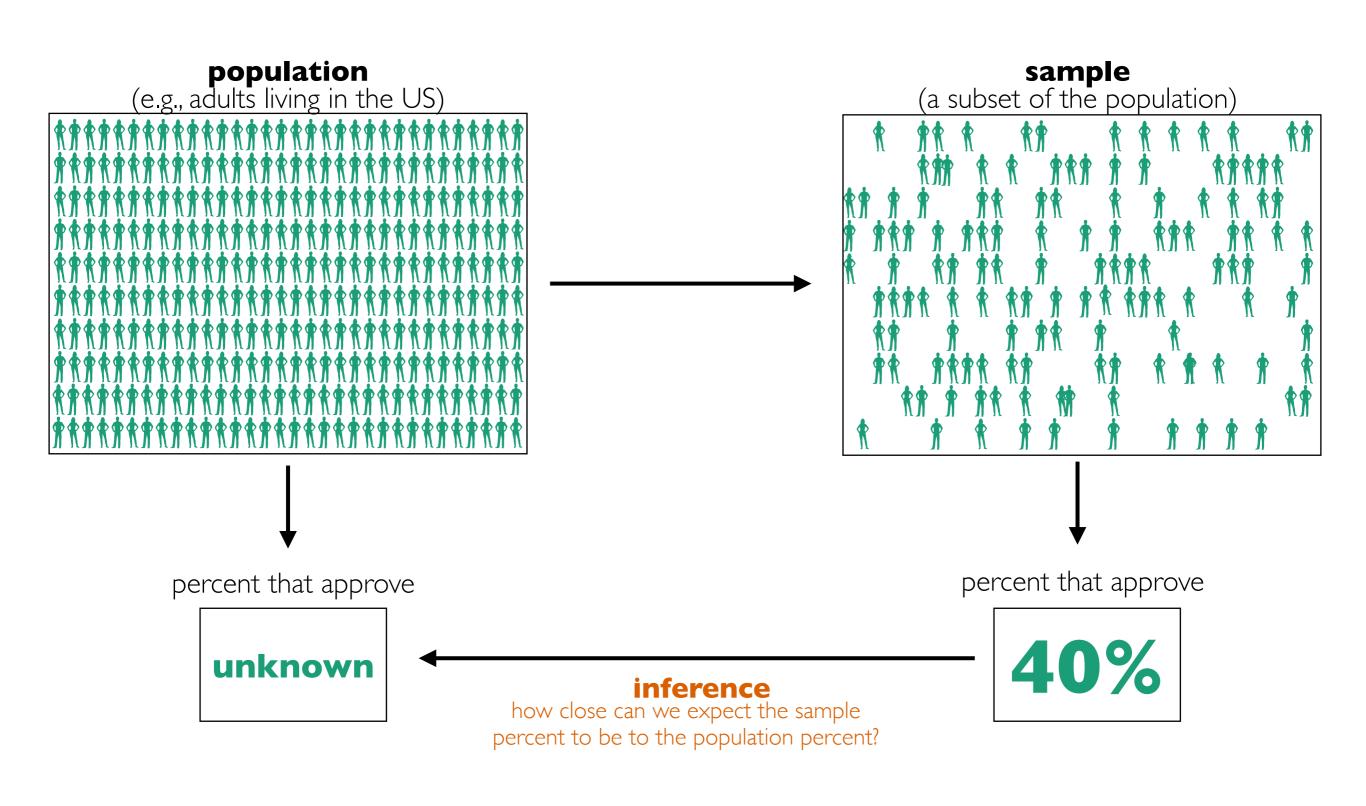
Basics of Probability

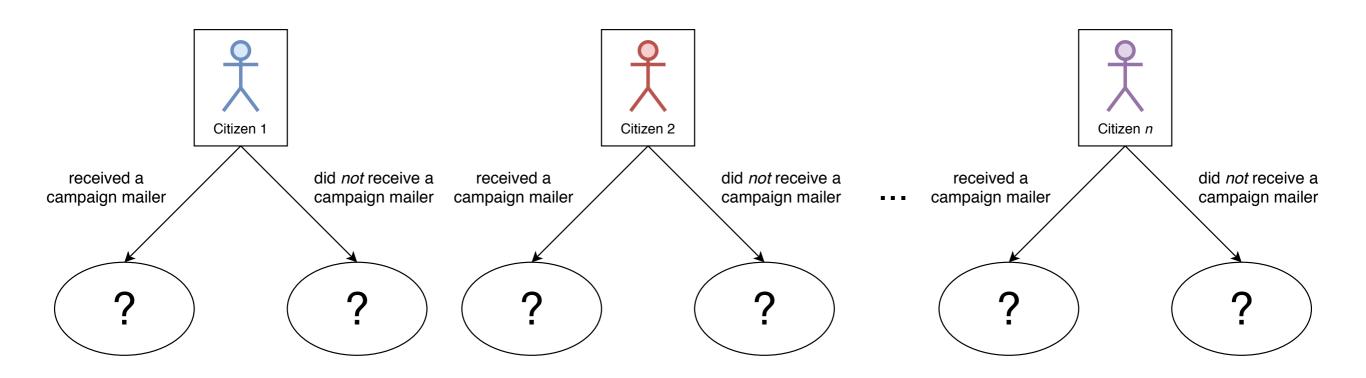
Motivation

Example 1: Sample Surveys



how close can we expect the sample percent to be to the population percent?

Example 2: Randomized Experiments



 R_T^{obs} : The <u>obs</u>erved turnout <u>Rate</u> in the <u>Treatment</u> group.

 R_C^{obs} : The <u>observed</u> turnout <u>Rate</u> in the <u>Control</u> group.

$$R_T^{obs} - R_C^{obs} \approx R_T^{hyp} - R_C^{hyp}$$
 estimate

TABLE 2. Effects of Four Mail Treatments on Voter Turnout in the August 2006 Primary Election					
	Experimental Group				
	Control	Civic Duty	Hawthorne	Self	Neighbors
Percentage Voting	29.7%	31.5%	32.2%	34.5%	37.8%
N of Individuals	191,243	38,218	38,204	38,218	38,201

how close can we expect the estimate to be to the ATE?

Our goal in the last third of this course is to answer these questions in a useful, careful, and intuitive way.

Fractions, Proportions, and Percents

Fractions, Proportions, and Percents

When we talk about "probability" or "chance" we can represent those as fractions, proportions, or percents.

Fractions (e.g., 1/4) are the easiest to work with when doing math with a pencil.

Proportions (e.g., 0.25) are the easiest to work with when doing math on a calculator.

Percents (e.g., 25%) are the easiest to talk and write about.

The Indicator Trick

Suppose a list of items (maybe numbers, maybe something else). You want to compute the proportion of the list that has some desired property.

Example: {A, B, C, C, B, C}
What proportion is this list is a C?

Example: {1, 2, 3, 2, 1, 4, 3, 5} What proportion is this list is an even number?

Indicator Trick: Flag or 'indicate' all the items with the desired feature with a 1, and all the others with a 0. Then take the average. This gives you the proportion that have the desired feature.

Shorthand: Indicate, then average.

One Note of Caution

Make a special note, though, that "%" means "per 100" or "/100." Because of this, you cannot mindlessly multiply percents.

Notice that $10\% \times 20\%$ does not equal 200%.

Instead, it equals $10\% \times 20\% = 10/100 \times 20/100 = 200/10,000 = 2/100 = 2\%$

While you can safely add percents, here's a good rule:

Do calculations with fractions or proportions; only convert to a percent once you have your final answer.

Chance Processes

Define a **chance process** as a process that one can repeat (independently and under the same conditions) to produce a result from defined set of possible outcomes.

We could imagine rolling a die, tossing a coin, or drawing a card.

When we draw with replacement, we draw multiple times, but replace the draws before continuing. This means that same cards can be drawn multiple times.

When we draw **without replacement**, we draw multiple times, but <u>do not</u> replace the draws before continuing. This means that same card cannot be drawn again.

Numbered-Ticket Model

The numbered-ticket model: Fill a box with k tickets numbered $t_1, t_2, t_3, ..., t_k$. Draw N times with replacement from the box. Record the average of the draws.

- I. You choose:
 - A. k: the number of tickets in the box.
 - B. **t**₁, **t**₂, **t**₃, ..., **t**_k: the numbers written on the tickets. (Tickets can have the same numbers.)
 - C. N: the number of times to draw from the box.
- 2. You always:
 - D. Draw with replacement.
 - E. Average the draws.

Numbered-Ticket Model

We analyze chance processes using **frequentist theory**. Under frequentist theory, we're interested in the probability that a chance process produces some event. For compactness, we sometimes write "the probability that A happens" as Pr(A).

Define the **probability** of an event as the proportion of times the event occurs in the long-run.

Computing Probabilities

Counting the Equally-Likely Outcomes: list all the equally-likely outcomes of a chance process, then compute the proportion of outcomes that fall into the category of interest.

The Probability of the Opposite: If you know that Pr(A doesn't happen) is 0.4, then the Pr(A happens) is 0.6. Subtract the probability of an event from 1 to obtain the probability of its opposite.

Conditional Probability: For some chances processes, probabilities can change depending on what's happened before. If you suspect that the probabilities might have changed, you need to recount the equally-likely outcomes. This is especially true when sampling without replacement. We write the "probability of A given that B happens" and Pr(A | B).

Multiplication Rule

Suppose I'm interested in the probability that two things both happen.

I draw a card that is red and a king.

I toss a head and then another head.

I draw a red marble and then another red marble.

Notice the word "and"—this means there are two things and I'm interested in **both** happening.

When you want to compute the probability that two things both happen, you multiply the probability of the first times the probability of the second, given the first.

More compactly, $Pr(A \text{ and } B) = Pr(A) \times Pr(B \mid A)$.

Independence

We say that two events are **independent** if the probability of the second is the same, regardless of how the first turns out.

Else, the two events are **dependent**.

Importantly for our purposes, we can say the following:

When drawing without replacement, the draws are dependent.

When drawing with replacement, the draws are independent.